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The geometrical theory of continuous distributions of dislocations traditionally 
neglects the dependence of a distribution of dislocations on the existence of point 
defects created by this distribution (e.g., due to intersections of dislocation lines). 
In this paper the influence of such point defects on metric properties of the 
continuized dislocated Bravais crystalline structure is assumed to be isotropic. 
The influence of the point defects on the distribution of dislocations is then 
modeled by treating dislocations as those located in a conformally flat space. 
This approach leads (among others) to new results concerning the geometry of 
glide surfaces. 

1. I N T R O D U C T I O N  

The influence of  many dislocations on mechanical properties of  a crystal- 
line solid is described in mechanics of  continua by means of the so-called 
geometrical theory of  dislocations (e.g., Bilby et  al. ,  1958; Kr6ner, 1984; 
Trz~sowski, 1993, 1994). According to this theory, though the existence of  
many dislocations breaks the long-range order of  a crystalline solid, neverthe- 
less its short-range order is remarkably preserved and the dislocated crystalline 
solid can be locally approximately described as a (macroscopically small) 
part of  an ideal crystal. On the other hand, it is known that the occurrence 
of many dislocations in a crystalline solid is accompanied by the appearance 
of point defects, due, e.g., to intersections of  the dislocation lines. For example, 
two intersecting right (or left) screw dislocations produce a line of  (self-) 
interstitials, and if one screw is right and the other left a line of  vacancies 
is formed (Frank and Steeds, 1975). Point defects can appear also at crossover 
points of  edge dislocations or when two parallel dislocation lines join together 
(Oding, 1961). 
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However, it is known also that dislocations have no influence on the 
local metric properties of the crystal structure of the body (Kr6ner, 1985). 
Consequently, the short-range order of a dislocated Bravais crystal (with the 
above-mentioned secondary appearance of point defects) can be described, 
in a continuous limit defining the so-called continuized crystal (KrOner, 1984, 
1986; Trz~sowski, 1993), by means of a triple (~, G, g) (Trz~sowski, 1994), 
where �9 = (Ea; a = 1, 2, 3) is a moving (vectorial) frame globally defined 
on the body (identified with an open connected subset ~ of the Euclidean 
point space E3), G C SO(3) is a group of rotations describing material 
symmetries of a macroscopically homogeneous crystalline solid, and g, [g] 
= cm 2, is a metric tensor with respect to which ~ is orthonormal: 

g(X) = ~abEa(X) ~ Eb(X) (1) 

where X = (X A) is a Lagrange coordinate system on the body ~ ;  we will 
use the so-called geometric frame references, i.e., dimensional coordinate 
systems such that [X A] = [dX a] = cm, [OA = O/OX A] = cm -l  (in the cgs 
units system). ~*  = (E a) is the moving coframe dual to ~ :  

Ea(X) = ~(X)OA, Ea(x) = ~A(X) dX A (2) 

~A(X)r = ~,; [Ea] = cm -1, [Eal = cm 

The moving frame ~ is (in general) the anholonomic one: 

[Ea, Eb] = C~bEc (3) 

where [ u ,  v ]  = u o v - v o u denotes the commutator product (bracket) of 
vector fields u and v considered as first-order differential operators, and 
smooth scalars C~bc constitute the so-called object of anholonomity (of @). 

The vector fields Ea define, at each point of the body (in like manner 
as in the case of a discrete Bravais crystalline structure), a triple of local 
crystallographic directions and scales of a locally Euclidean internal length 
measurement along them. It ought to be stressed that the base vectors Ea do 
not describe translational symmetries of  an ideal local lattice (even in the 
case of  a monocrystalline solid). This is because in a continuized crystal 
translational symmetries are lost and only rotational symmetries (of the con- 
sidered crystalline material) are preserved (Trz~sowski, 1993). The metric 
tensorg defining the (non-Euclidean) internal length measurement in the body 
represents the property of the dislocated crystalline solid that dislocations as 
well as the secondary point defects created by them have no influence on its 
local metric properties. The subgroup G [of the group SO(3) of all proper 
orthogonal matrices 3 X 3] can be identified with the group of point symme- 
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tries of  an ideal Bravais reference lattice defining a discrete crystalline struc- 
ture of the solid in its reference configuration (identified with ~) ,  or G can 
be identified with the group of symmetries of  a crystal texture; for isotropic 
bodies G = SO(3). The pair (~, G) is called a Bravais moving frame; since 
G is fixed here, we will identify the Bravais moving frame with the moving 
frame ~. 

The internal length measurement metric tensor depends on the distribu- 
tion of point defects (vacancies or interstitials) in the crystal. In particular, 
each vacancy sits on a crystallographic lattice site, and thus at the junction 
of three crystallographic lattice lines. Moreover, the frequency of seeing a 
vacancy along a crystallographic path, measured by lattice steps between 
neighboring vacancies, is the same in the real and in the continuized crystal. 
This is due to the requirement that the contents of  mass and defect are not 
changed in the limiting process defining a continuized crystal. Thus, the 
vacancy, being a crystallographic defect, may be assumed to be isotropic in 
any Bravais crystal (KrSner, 1990). If  interstitials rather than vacancies are 
considered, then their influence on the internal length measurement can well 
be anisotropic. This is because the interstitials are never on lattice lines, and 
thus not in the junction of these lines (KrOner, 1990). However, if we consider, 
as a particular case or as an approximation, the isotropic influence of intersti- 
tials, we can calculate the internal length measurement metric tensor as 

gas(Z) * (1 + 8(Z))28AB (4) 

where Z = (Z A) is a Cartesian coordinate system, 8 > 0 if the influence of  
interstitials predominates, - 1 < ~ < 0 if the influence of vacancies predomi- 
nates, and 8 = 0 if the influence of interstitials and vacancies neutralize each 
other; _* means that the formula is considered in a (Cartesian) distinguished 
coordinate system. Let us note that, e.g., in metals in thermal equilibrium 
the concentration of interstitials may be neglected in comparison with that 
of vacancies (Hull and Bacon, 1984). On the other hand, usually the ratio 
of vacancies to atoms in the unit volume is very low, e.g., does not reach 
more than 10 -3 , say, in thermal equilibrium (KrOner, 1990). Therefore, one 
can say that the coefficient ~ defining the conformal factor of (4) may be 
neglected. However, we will see (Section 3) that the existence of  this confor- 
mal factor influences the geometry of  glide surfaces. 

The long-range distortion of  the crystal structure due to dislocations is 
represented, in the continuized crystal approximation, by means of the so- 
called Burgers field "r,~ = (xa), being a triple of 2-forms defined as 

= dE a = �89 Eb ^ E c, [r a] = cm (5) 

where ^ denotes the exterior product. It can be shown that (Yano, 1955) 

~b~ = --C'~bc (6) 
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where the object of anholomity C~br is defined by (3). If a'abc = const, then 
the Bravais moving frame �9 spans a three-dimensional real Lie algebra g,~ 
of ~-parallel vector fields tangent to the body: 

g~ = {v = vaEa: v a = const} (7) 

and endowed with the commutation rules defined by (3). The corresponding 
distribution of dislocations is called uniformly dense (Trzfsowski, 1993). It 
follows from the theory of Lie algebras that there exists [according to the 
Bianchi classification of these algebras (Barut and R0czka, 1977)] a finite 
number of types of uniformly dense distributions of dislocations; these are 
labeled by types of nonisomorphic three-dimensional real Lie algebras (Trzf- 
sowski, 1993). In particular, an Abelian Lie algebra (i.e., with C'gbc = 0) 
describes the case when dislocations are absent. 

It follows from (1), (5), and (6) that the internal length measurement 
metric tensor g associated with an Abelian Lie algebra is flat, and thus we 
have ~ = 0 in (4). This means that this metric tensor depends only on the 
secondary point defects created by a distribution of dislocations. Note that the 
flatness of g does not mean that dislocations are absent [see the commentary 
following (4) and Section 2]. The isotropy condition (4) restricts the consid- 
ered distributions of dislocations to those for which the internal length mea- 
surement metric tensor is conformally flat. Such is, for example, the case of 
the material Riemannian space (2~, g) of a constant scalar (sectional) curvature 
associated with a uniformly dense distribution of dislocations (Section 3). 

We see that the geometrical theory of dislocations should be based on 
the mutually related triple (~, "r,~, g) of geometric objects rather than (as is 
usually done) on the pair (~, "r,~) (e.g., Bilby et al., 1958) and a complementary 
object (e.g., a Riemannian metric or mass density) representing the possibility 
of the point defect occurrence in a crystal with dislocations (e.g., Krrner, 
1984; Davini and Parry, 1991). In this paper these mutual relations are 
modeled by treating dislocations as those located in a conformally flat space 
(Section 2). We obtain, then, e.g., a generalization (taking into account the 
influence of point defects) of the well-known Bilby et al. (1958) results 
concerning the geometry of glide surfaces, and a generalization of a formula 
(Orlov, 1983) describing the influence of dislocations on the mean curvature 
of a crystalline network (Section 3). 

2. DENSITY OF DISLOCATIONS 

The long-range distortion of a crystal structure due to the influence of 
many dislocations can be quantitatively measured by the Burgers vector (e.g., 
Trz~sowski, 1994). Its local counterpart, called a local Burgers vector, can 
be introduced in the following way. If the 2-form ~ab = E a A  E b is considered 
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as the one representing a surface element dE of a surface E C ~ [treated 
as a two-dimensional submanifold of  the material Riemannian space (9~, g); 
see Section 1] with its unit normal ! = laEa ,  i.e., if we identify 

d E a  = �89 bc = la d E ,  1~ = ~ab lb 

e ~bc = g-UZCbc, g = det(gab) * 1 (8) 

[la] = [1], [dEa] = [dE] = cm 2 

where  ff.abc denotes the permutation symbol, then it follows from (5) and (8) 
that a component C of the Burgers field "to (Section 1) can be identified 
with an infinitesimal quantity of  the form 

"r a = pl3"dE, [P] = cm-2, [[~a] = cm (9) 

where p is a positive scalar independent of  the choice of/ ,  and we have denoted 

p ~ a  = lbotba, otab - -  1 d -- ~ eac ~ca, 1J a = 1 (10) 

Consequently 

"tabc = ebcd'Y d a -  t[b~] 
~l ab = Ot (ab), t a = "l'bba = eab~a bc (11) 

eabc = glr2r * ~ab~, [T ab] = [ta] = cm -1 

where eabc = e "bc- Interpreting I as the unit vector field tangent to a dislocation 
line [defined, in the continuous description, as the boundary between slipped 
and unslipped parts of  the crystal (Hull and Bacon, 1984)] normal to the 
surface element d~,  and assuming the scalar p to be the (volume) scalar  
density o f  dislocations defined as the length of all dislocation lines included 
in the volume unit of  the Riemannian space, i.e., with the volume element 
dV(X)  defined as 

dV(X)  = g(X)l/2dVo(X) (12) 

g(X)  = det(gas(X)) 

where dVo(X) ( =  dX l ^ d X  z A d X  3) covers, in the Cartesian coordinate 
system of  (4), with the Euclidean volume element, we can define the local 
Burgers vector as [I = [3aEa, [1~] = [1] (Trz~sowski, 1994). The tensor field 
a = otabEa | Eb is called the dislocation density tensor. 

A line can be interpreted as an edge dislocation line if 

~ a l  a = 0, [3 :~ 0 (13) 

or a screw dislocation line if 

~ a  = .ql  a (14) 
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In other cases the line is interpreted as a mixed (edge and screw) dislocation 
line. The plane ~r(l, 13) containing vectors l and 13 can be interpreted as a 
local slip plane (TrzCsowski, 1994). 

It can be shown that for uniformly dense distributions of dislocations 
(Section 1) the following conditions are fulfilled [see (11)]: 

and 

i.e., at least locally 

~b~  = 0 (15) 

dt = 0 (16) 

t = dto, [to] = I l l  (17)  

and the surfaces tO = const can be considered as (local) slip surfaces (TrzCsow- 
ski, 1994). If the first the de Rham cohomology class of the three-dimensional 
manifold 9~ vanishes (e.g., it is the case of a three-dimensional affine space) 
or, more generally, if the manifold is contractible to a point, then the potential 
tO of (17) is defined globally. Since for uniformly dense distributions of 
dislocations ~l ab = const and ta = const, (15) means that, up to a global 
rotation of the base fields Ea, we can assume that 

~1 = "Y~bEo ~ Eb = "yaEa ~ Eo (18) 

t = taE a = s E  1, 

and so, in this base, 

(Olflb) = (!1 

~/ls = 0;  [S] = [~a] ~___ c m - I  

~/2 

- Ix  V 3] 
Ix = s/2, Ix7 t = 0 (19) 

Let us consider the Lie algebra go associated with a uniformly dense 
distribution of dislocations and defined by (3) and (7) with ~ = const. If 
the corresponding internal length measurement metric tensor g defines a 
Riemannian space of the constant scalar (sectional) curvature K, then it is 
an Einstein space with [see (1) and (2)] 

RAn[g] = 2Kgan (20) 

a b 
gas = eAen~ab, [gaB] = [1], [K] = cm -2 

where Ran[g] denotes the Ricci tensor of g, and thus g is conformally fiat 
(Got~b, 1966). Therefore, in this case the isotropy condition (4) is fulfilled 
and the Ricci tensor is an isotropic tensor, too. It can be shown, correcting 
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slightly computations of Trz~sowski (1994) and taking into account (11), 
(15), and (20), that the potential q~ of (17) should satisfy the equation 

Ag~p = l[2~ab~tab -- (~/Cc)2 ] a t- 4 K  (21) 

where Ag denotes the Laplace-Beltrami operator on (9~, g): 

Ag~ = g-1/2CgA(gl/2gABOB~) (22) 

and we have denoted 

~ab : ~bc~ lac, "Yab = ~ac'yCb (23) 

It can be shown also [changing slightly the base fields of Lie algebras 
considered by Fagundes (1991)] that the only real three-dimensional Lie 
algebras defining the internal length measurement of a constant scalar curva- 
ture K are those of  the following types. 

(a) gr A b e l i a n  defined by 

with 

[Ea, Eo] = 0, i.e., d E  = 0 (24) 

.yab= 0, t a = 0, K = 0 (25) 

(b) g~ = g~, 0 ~ K --< 1, defined by 

[El, Ez] = 2k(v, E2 + E3), [El,  E3] = 2k(Id~3 - E2), [E2, E3] = 0 

dE l = 0, k = const > 0, [k] = cm -l,  [K] = [1] (26) 

with 

(~/ab) = - 2 k  diag(0, 1, 1), ta = 4kKSa 1 (27) 

For example, for the base covectors of the form 

E 1 = du l, E 2 = exp(--kKul)(cos ku ~ du z + sin ku 1 du 3) (28) 

E 3 = exp(--kKul)(--sin ku 1 du 2 + cos ku 1 du3), [u a] = cm 

we have 

d E  l = O, d E  2 = - k ( K E  l ^ E 2 - E l ^ E 3) (29) 

d E  3 = - k ( K E  1 ^ E 3 + E 1 ̂  E z) 

and so, according to (3), (5), and (6), the commutation rules (26) are ful- 
filled. Then 

g(u )  = du I | du I + e x p ( - 2 k K u l ) ( d u  2 | du  z + du 3 ~ du  3) (30)  
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and (Yano, 1955) 

with 

K =  KK = - ~  <- 0, ld = 1/k (31) 

with 

~/ab = 0, t~ = 4k~  (33) 

For example, for base covectors of the form 

E l = du l, E ~ = exp(-ku l) du ~ (et = 2, 3) (34) 

we have 

d E  l = 0 ,  d E  2 = - k E  l ^ E 2, d E  3 = - k E  I A E 3 (35) 

and the commutation rules (32) are fulfilled. Since 

g(u )  = du I | du I + e x p ( - 2 k u l ) ( d u  2 | du 2 + du 3 | du 3) (36) 

we obtain that 

K = - I / ~ < 0  (37) 

(d) g~, = gv ~- so(3) defined by 

[E~, Eb] = 2keaCbEc (38) 

eacb = ~dcr k = const > 0, [k] = cm-1 

,~ab = _2kS.b, ta = 0 (39) 

It follows from (21) with q~ = const and from (39) that 

K = l/Fa > 0 (40) 

Inserting (27) or (33) into (21), we obtain that for K < 0 the following 
equation should be fulfilled: 

Agq~ = 4K (41) 

Moreover, for the Lie algebra go defined by [see (26)] 

[El, E2] = 2kE3, [El, E3] = -2kE2, [E2, E3] = 0 (42) 

with [see (27)] 

(c) go = gt defined by 

[El, E2] = 2kE2, 

d E  l = 0, 

[El, E3] = 2kE3, [E2, E3] = 0 (32) 

k = const > 0, [k] = cm-l  
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(~b) = - 2 k  diag(0, 1, 1), ta = 0 (43) 

we have K = K0 = 0, and (41) is fulfilled by its particular solution tp = 
const [see (17) with t = 0]. Note that this Lie algebra is isomorphic to the 
Lie algebra e(2) of the group E(2) of  motions of  the plane R 2 (Barut and 
R0czka, 1977). 

From (26) we obtain that structure constants of the Lie algebra gK have 
the form 

C~ab = 4k(K~a~ 1 -- ~2 ~3 ~c 1 c O[aOb]O 1 ~- -~l~ab ) (44)  

Thus [see (3), (6), (10), and (11)] 

p ~ a  = 2k(Klor + l l ~  - l a) (45) 

p~g  : 2k(1 - ~ ) , / 1  + K 2, [32 = ~a~a 

It follows from (13) and (14) that there exist then no edge dislocation lines, 
and for K :~ 0 there exist no screw dislocation lines. So, for K 4 : 0  there 
exist mixed dislocation lines only. For K = 0, lines with l~ = 0 are screw. 
Since [see (27) and (45)] 

ta la = 4kKl  l, ~at a = 0 (46) 

surfaces q~ = const normal to the t (=  4kv, E 0  direction are slip surfaces for 
all curves on these surfaces (i.e., if il = 0). Along these slip surfaces we have 

p[3g = 2k~/1 + K z (47) 

From (31) we obtain that for the Lie algebra gt 

~ab = 4k~daSCb] (48) 

and thus 

p[3 a = 2ketbalb, pl3g = 2k~/1 - ~ (49) 

ta la = 4k l  l, ~at a ~" 0,  ~al a = 0 

So the Lie algebra gt describes edge (and only edge) dislocation lines, surfaces 
q~ = const normal to the t (=  4kE1) direction are slip surfaces for all curves 
on these surfaces, and along these surfaces 

p[3g = 2k (50) 

For the Lie algebra g~ [see (38)] we have 

CCab = -- 2keab c (51)  

p~a  = _ 2k l  a, p~g  = 2 k  
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which means that this Lie algebra describes screw (and only screw) dislocation 
lines, and there exist no distinguished slip surfaces in this case. 

Lattice lines in a continuously dislocated crystal form a system of three 
independent congruences of curves--trajectories of base vectors of the Bra- 
vais moving frame qb = (Ea) (Bilby et aL, 1958; Trzgsowski, 1994). In 
general none of these congruences is normal (that is, the curves of the 
congruence are not the orthogonal trajectories of a family of surfaces). But 
in the case of the so-called single glide (in which the dislocation moves in 
the surface which contains both the line and Burgers vector), the lattice lines 
originally normal to the plane of slip do form a normal congruence (Bilby 
et al., 1958). The surfaces are called glide surfaces. It follows from (46) and 
(49) that slip surfaces cp = const can be considered, for all dislocation lines 
located on them, as glide surfaces. Moreover, along these glide surfaces, the 
relation (47) (for g,~ = gK) or (50) (for g~ = gt) is valid. 

3. INTERNAL L E N G T H  MEASUREMENT 

It was pointed out in Section 2 that the internal length measurement 
metric tensor g of a constant (sectional) scalar curvature satisfies the isotropy 
condition (4). Moreover, there exists then a coordinate system X = (X A) such 
that (Eisenhart, 1964) 

gaB(X) = Ot(x(X))-2~AB 

et(X) = 1 + �88 K)x 2 > 0, x(X)  = rlrd (52) 

r 2 = ~ABXaX B, rz = IKI-u2, Ira] = cm 

where K denotes the scalar curvature. The coordinate system of (52) is not, 
in general, that (Cartesian) of (4). Let us designate by X a = XA(Z) the 
coordinate transformation Z ---> X and by J(Z)  > 0 the Jacobian of this 
transformation. Computing representations of the Riemannian volume ele- 
ment (12) in both coordinate systems and taking into account that g of (12) 
is a scalar density of weight +2 (Got~tb, 1966), we obtain that 

J(Z) 1/3 
~ ( z )  - - -  1, J ( z )  > 0 ( 5 3 )  

a(x(Z)) 

x(Z) --- r(Z)/rd, F(Z)  2 = ~ABXA(Z)XB(Z) 

In particular, if J(Z) = 1, then 

x(Z) 2 
~(Z) = - s g n  K 4ct(x(Z)) ' I~(Z) I < 1 (54) 

and from (4) and (54) we conclude the following. If K > 0, then ~(Z) < 0 
and the influence of vacancies (on the internal length measurement) predomi- 
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nates. If  K < 0, then ~(Z) > 0 and the influence of interstitials predominates. 
If K = 0, then the influences of vacancies and interstitials neutralize each 
other (e.g., this is the case of the Lie algebra go; Section 2) or point defects 
are absent (since dislocations are absent). If, additionally, X(0) = 0, then 
~(0) = 0 and there exist in the neighborhood of  Z = 0 vacancies as well as 
interstitials. Note that if K < 0, then assuming the existence of a coordinate 
system X = (X  A) of (52) such that 

or(x0) ~ J(Z) 1/3 < ot(x(Z)),  x(0) = 0 (55) 

ct(x) = 1 - �88 > 0, 0 - < x - - - x 0  < 2 

we can consider the case when the influence of  vacancies predominates in 
the interior of the sphere K(0, XOrd) C K(O, 2rd). 

If the distribution of dislocations is uniformly dense and K -< 0, then 
(30) and (36) mean that the internal length measurement metric tensor is 
represented in the so-called geodesic form (Yano, 1955): 

g = du I ~ du I + aIt(ul)a 

a = 8~f~du ~ | du  ~, ct, 13 = 2, 3 

xIt(ul) = exp(-2k~:u I) for g~ = gK 

~ ( u  1) = exp( -2ku  I) for g,~ = gt 

(56) 

The potential q~ of (17) takes, in the coordinate system u = (u A) of  (56), the 
following form: 

q~ = 2Hu 1 

H = 2 K k  for g ~ = g K  (57) 

H = 2 k  for g ~ = g t  

and the surfaces Ec = {u: u I = c = const} normal to the El (-- OlOu ~) 
direction can be considered as glide surfaces along which the relation (47) 
or (50) is valid (Section 2). 

The surfaces Ec are two-dimensional submanifolds of the Riemannian 
material space (~ ,  g) with their first fundamental forms ac defined by 

ac = ~ ( c ) a  = a~f~du ~ | du f~, a,~ = ~(c)~,~ (58) 
C C 

The second fundamental form bc of Ec is given by (Eisenhart, 1964) 

be = b~f~du ~ | du ~, b ~  = H ~(c)~,~ (59) 
C C 
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where H is the constant defined in (57). This means that E~ are the so-called 
umbilical surfaces (i.e., surfaces with indeterminate lines of curvature), being 
a generalization of a plane or sphere in a Euclidean 3-space. The mean 
curvature H~ of the surface Ec (for the normal direction E0 is a constant 
independent of c, and 

~ = a ~ b ~ = H  (60) 
C C  

Since (~,  g) is a space of a constant scalar curvature K [given by (31) for 
g ,  = gK or (37) for g .  = gt] and the Ec are umbilical surfaces, a surface Ec 
has the constant curvature Kc and (Eisenhart, 1964) 

g c ~ .  l 2 -~Hc + K = 0 (61) 

where (31), (37), (57), and (60) were taken into account. Thus, the surfaces 
Ec are isometric to the plane, in the small at least. Note that a surface in a 
three-dimensional flat space on which the scalar curvature vanishes is called 
a developable surface; here it is the case described by the Lie algebra go 
[(42) and (43)] isomorphic to the Lie algebra e(2) of the group E(2) of 
motions of the plane R 2. These results concerning the geometry of slip surfaces 
generalize the well-known (Bilby et al., 1958) results concerning developable 
glide surfaces. Moreover, the Euclidean group E(2) is represented as a sub- 
group of the group of motions in the Riemannian manifold (~,  g) (Yano, 
1955), and slip surfaces are invariant manifolds of the group E(2) action. 
This means that the considered Riemannian material space admits as its 
motion, in the small at least, the deformation of an ideal crystal lattice 
characterizing the influence of a single glide on this lattice (cf. Bilby et 
al., 1958). 

The relations (47) and (50) can be written in terms of (57) and (60) as 

o(X)~g(X) = v n  

1 
v = - x / ~ +  1 for g~=gK,  0<K- -<  1 (62) 

K 

v = l  for g . = g t  

Since trajectories of a Bravais moving frame are lattice lines of the continuized 
Bravais crystal (see final remarks of Section 2), the relation (62) generalizes 
the well-known relation describing the influence of dislocations on the mean 
curvature of a crystalline network (here the one located on a surface Ec) 
(Odov, 1983). For K = 0 we have K = 0 [see (31)], and (47) takes the form 
(50) with g being a flat metric. 
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4. EDGE DISLOCATION LOOPS 

Let us return to the identification (9) of the Burgers field a'o = (xa). It 
follows from (6), (10), (33), and (48) that the dislocation density tensor of 
the uniformly dense distribution of edge dislocations defined by the Lie 
algebra gt (Section 2) has the form 

0s ab ~- I t cecab (63) 

and (9) can be written as 

x a = ~oad~ (64 )  

03 a : eabCl~, [lbr Stblr 1, Sc = t J2  

Consequently, the Burgers field "r~ can be identified with an infinitesimal 
vectorial quantity "to of the form 

"r = a'aEa = t o  d ~ ,  s = s  (65) 

where the vector field to can be interpreted as a vortex field of vortices in 
a cylinder tube with the section d~. The tensorial density l~b of this vortices 
is given by 

~ a b  = 1 c ~-ea~o) (66) 

Comparing (9) and (64), we obtain that 

to a = p13 a (67) 

and (66) becomes 

~ a b  = P ~ a b ,  ~ab  - -  1 c - ~eabcl3 (68) 

Thus, the Lie algebra gt can be interpreted as the one describing a system 
of infinitesimal oriented edge dislocation loops of the scalar density p and 
with the tensorial density 13ab of their local Burgers vectors. For example, 
the irradiation of a crystal with fast neutrons produces very small circular 
edge dislocation loops (Bullough and Newman, 1970). The loops can be 
treated then (in the continuized crystal approximation) as being infinitesimal. 

Since the glide direction of a loop is parallel to the Burgers vector of 
the loop, we can consider the local Burgers vector I~ as the one defining a 
local generalized translation according to (Yano, 1955) 

L~E~ = 0, a = 1, 2, 3 (69) 

where L denotes the Lie derivative operator. It can be shown that if the local 
Burgers vector I~ corresponds to a D-parallel dislocation line (i.e., 1 = laEa, 
l a = const), then the condition (69) reduces to (Trz~sowski, 1994) 

P = P0 exp(q~/2) (70) 
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where tp is the potential of  (17) defined by (41) with K = _/~-2, Id = 1 /k  

[see (32)-(37)], p is the scalar density of dislocation loops, and P0, [P0] = 
cm -2, is a positive constant. The module [3g of local Burgers vectors of 
dislocation loops gliding along the surface q~ = const can be computed from 
(62) with v = l and (70). Equations (17), (41), (63), and (70) constitute a 
static counterpart of the dislocation fluid (of the density p) model consisting 
of infinitesimal edge dislocation loops, and describing (in its dynamical 
version) the influence of mobile dislocation loops on the crystal lattice plastic 
isotropic distortion (Trzcsowski, 1989, 1995). If additionally (52) (with sign 
K = - 1  a n d  rd = ld) is taken into account, then we obtain a local [in the 
interior of the sphere K(0, 2/d)] complete description of  the distribution 
of  dislocations. 

5. SUMMARY OF T H E  RESULTS 

It was shown in Section 2 that uniformly dense distributions of  disloca- 
tions consistent with an isotropic internal length measurement (Section l) 
are associated with three types of nonisomorphic Lie algebras: the gt type 
describing a distribution of edge dislocations, the gv type describing a distribu- 
tion of screw dislocations, and the g~-type, 0 <-- K -- 1, describing for K 
0 a distribution of mixed dislocations (for K = 0 screw dislocation lines are 
additionally admitted). 

For a distribution of dislocations of gt or g~ types, K ~ 0, there exists 
a geometrically and physically distinguished family of slip surfaces, and an 
equation defining these surfaces can be formulated (Section 2). It was shown 
in Section 3 that slip surfaces are then the flat umbilical ones, and become 
planes if point defects have no influence on the internal length measurement 
(the case of the Lie algebra go). Moreover, the slip surfaces are invariant 
under deformations of an ideal crystal lattice characterizing the influence of 
a single glide on this lattice. Consequently, these slip surfaces can be consid- 
ered, for dislocation lines located on them, as glide surfaces, and a relation 
between the scalar density of dislocations and modules of local Burgers 
vectors of these dislocation lines can be formulated (Section 3). 

The grtype distribution of  dislocations can be interpreted as describing 
a "dislocation fluid" consisting of infinitesimal edge dislocation loops (Sec- 
tion 4). The density of this fluid covers with the (volume) scalar density of 
dislocations, and can be computed based on the equation defining slip sur- 
faces. Consequently, the field of  local Burgers vector modules of  dislocation 
loops located on glide surfaces can be computed, too. 
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